Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 51 of 117

Tab 4

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 52 of 117

1	Research grade marijuana supplied by the National Institute on Drug Abuse is genetically
2	divergent from commercially available Cannabis
3	
4	Anna L. Schwabe ^{1*} , Connor J. Hansen ^{1,2} , Richard M. Hyslop ² , Mitchell E. McGlaughlin ^{1*}
5	
6	¹ University of Northern Colorado, School of Biological Sciences, Greeley, CO 80639, USA.
7	² University of Northern Colorado, Department of Chemistry and Biochemistry, Greeley, CO
8	80639, USA.
9	*Corresponding Authors: schw0701@bears.unco.edu , Mitchell.McGalughlin@unco.edu
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

25 Abstract

26 Public comfort with *Cannabis* (marijuana and hemp) has recently increased, resulting in 27 previously strict Cannabis regulations now allowing hemp cultivation, medical use, and in some 28 states, recreational consumption. There is a growing interest in the potential medical benefits of 29 the various chemical constituents produced by the *Cannabis* plant. Currently, the University of 30 Mississippi, funded through the National Institutes of Health/National Institute on Drug Abuse 31 (NIH/NIDA), is the sole Drug Enforcement Agency (DEA) licensed facility to cultivate *Cannabis* for research purposes. Hence, most federally funded research where participants 32 33 consume *Cannabis* for medicinal purposes relies on NIDA-supplied product. Previous research 34 found that cannabinoid levels in research grade marijuana supplied by NIDA did not align with 35 commercially available Cannabis from Colorado, Washington and California. Given NIDA 36 chemotypes were misaligned with commercial *Cannabis*, we sought to investigate where 37 NIDA's research grade marijuana falls on the genetic spectrum of *Cannabis* groups. NIDA 38 research grade marijuana was found to genetically group with Hemp samples along with a small 39 subset of commercial drug-type Cannabis. A majority of commercially available drug-type 40 *Cannabis* was genetically very distinct from NIDA samples. These results suggest that subjects 41 consuming NIDA research grade marijuana may experience different effects than average 42 consumers.

43

44 Introduction

Humans have a long history with *Cannabis sativa* (marijuana and hemp), with evidence of
cultivation dating back as far as 10,000 years ago ¹. The World Health Organization proclaims *Cannabis* as the most widely cultivated, trafficked and abused illicit drug, and reports over half
of worldwide drug seizures are of *Cannabis* ². Phytochemicals of interest in *Cannabis* are

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 54 of 117

49primarily Δ^9 -tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA), both of50which require a decarboxylation conversion to the biologically active forms, THC and CBD,51respectively. The United States is currently experiencing drastic changes in patterns of *Cannabis*52use associated with widespread relaxation of laws that previously limited both medical and53recreational marijuana consumption ³ and hemp cultivation. This has led to a need for extensive54research into the basic biology and taxonomy of *Cannabis sativa* ⁴⁻⁸, and the possible benefits55and threats from *Cannabis* consumption ^{3,9}.

56

57 Although Cannabis sativa is the only described species in the genus Cannabis (Cannabaceae), 58 there are several commonly described subcategories of Cannabis that are widely recognized. 59 There are two primary *Cannabis* usage groups, which are well supported by genetic analyses ^{7,10-} ¹²: *Hemp* is defined by a lack of THC (< 0.3% THC in the U.S.), and *marijuana* or *drug-types* 60 61 have moderate to high THC concentrations (> 0.3% THC in the U.S.). Hemp-type Cannabis tends to have higher concentrations of CBD than drug-types ¹³. Drug-type *Cannabis* usually 62 63 contains > 12% THC and averages ~ 10-23% THC in commercially available dispensaries $^{14-16}$. 64 Within the two major usage groups, *Cannabis* can be further divided into varietals, which are 65 referred to as strains. The drug-type strains are commonly categorized further: *Sativa* strains reportedly have uplifting and more psychedelic effects, *Indica* strains reportedly have more 66 relaxing and sedative effects, and *Hybrid* strains, which result from breeding Sativa and Indica 67 68 strains, have a spectrum of intermediate effects. There is extensive debate among experts surrounding the appropriate taxonomic treatment of *Cannabis* groups, which is confounded by 69 colloquial usage of these terms versus what researchers suggest is more appropriate 70 nomenclature ^{5,17-24}. Commercially available drug-type strains for medical or recreational 71 72 consumption are labeled with a strain name, as well as the levels of THC and often CBD as a

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 55 of 117

73 percent of the dry weight. Genetic analyses have not shown clear and consistent differentiation among the three commonly described drug-type strains ^{7,10}, but both the recreational and medical 74 75 Cannabis communities maintain there are distinct differences in effects between Sativa and Indica strains ²⁵⁻²⁷. 76

77

78 Cannabis has been federally controlled since 1937, many states now allow regulated medical (33 79 states and the District of Columbia) and recreational use (10 states and the District of Columbia) 28 . There were > 3.5 million registered medical marijuana patients reported as of May 2018 29 . 80 81 However, the United States Drug Enforcement Agency (DEA) lists Cannabis sativa as a Schedule 1 substance ³⁰, and as such, research on all aspects of this plant has been limited. U.S. 82 83 Surgeon General Jerome Adams recently expressed concern that the current scheduling in the 84 most restrictive category is inhibiting research on *Cannabis* as a potentially therapeutic plant ³¹. 85 A Schedule 1 substance is described as a drug with no accepted medical use and a high potential for abuse ³⁰. The University of Mississippi, funded through the National Institutes of 86 87 Health/National Institute on Drug Abuse (NIH/NIDA), currently holds the single license issued by the DEA for the cultivation of *Cannabis* for research purposes ³². As such, NIDA serves as 88 89 the sole legal provider of *Cannabis* for federally funded medical research in the United States. 90 Bulk research grade marijuana supplied by NIDA is characterized by the level of THC and CBD. 91 They offer *Cannabis* for research with four levels of THC: *low* (< 1%), *medium* (1-5%), *high* 92 (5-10%) and *very high* (>10%), with the additional option of four levels of CBD: *low* (<1%), 93 *medium* (1-5%), *high* (5-10%) and *very high* (> 10%). 94

95 The National Institute on Drug Abuse funds a wide range of research on drug-type *Cannabis*,

96 including long and short-term effects on behavior, pain, mental illness, brain development, use

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 56 of 117

and abuse, and impacts of policy changes related to marijuana ^{33,34}. Additionally, the NIH
provides support for researching cannabinoids as separate constituents. Funding for CBD related
research is reported as \$36M (2015 - 2017) and projected to be \$36M for 2018 - 2019 ³⁵, while
cannabinoid related research is reported as \$366M from 2015 - 2017 and projected to be \$292M
for 2018 - 2019 ³⁶.

102

Recent research has documented that NIDA-provided *Cannabis* has distinctly different
cannabinoid profiles than commercially available *Cannabis* ¹⁴. Specifically, Vergara et al. (2017)
found that NIDA samples contained only 27% of the amount of THC and 48% of CBD levels of
commercially available *Cannabis*. The substantial chemical differences between NIDA and
commercially available *Cannabis* raises significant questions about whether research conducted
with federal *Cannabis* is indicative of the experience consumers are having.

109

Medical research on *Cannabis* primarily focuses on THC and CBD ^{3,9,35-40}, but there are 110 111 hundreds of other chemical constituents in *Cannabis*⁴¹, including cannabinoids and terpenes, 112 which have largely been ignored ⁹. There is evidence to suggest that chemical constituents in 113 various combinations and abundances work in concert to create the suite of physiological effects reported ⁹. The chemical makeup of each variant of *Cannabis* is influenced by the genetic 114 115 makeup as well as environmental conditions. Given that previous research has determined the 116 cannabinoid levels of research grade marijuana from NIDA is significantly different from 117 commercially available Cannabis¹⁴, genetic investigations are warranted to determine if NIDA 118 Cannabis is genetical distinct from other sources. In the current study we investigated the genetic 119 relationship of NIDA provided *Cannabis* to commercially available drug-type strains, as well as 120 feral and cultivated hemp. Ten variable nuclear microsatellite regions were used to examine

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 57 of 117

121	genetic differentiation among our samples. Sampling included NIDA (High THC and High
122	THC/CBD), high THC drug-type, low THC/high CBD drug-type, wild growing hemp (presumed
123	escapees from cultivation), and commercial hemp. This study aimed to investigate where
124	research grade marijuana supplied by NIDA falls on the genetic spectrum of Cannabis groups.
125	
126	Results
127	Our analyses examined the genetic differentiation and structure of samples from six groups
128	(Supplemental Table 1). 1) NIDA – research grade marijuana samples obtained from NIDA
129	classified as High THC or High THC/CBD; 2) Hemp – Cannabis obtained from hemp
130	cultivators and feral collected hemp; 3) High CBD – drug-type Cannabis with relatively high
131	levels of CBD and low levels of THC; and commercially available drug-type Cannabis described
132	as 4) Sativa, 5) Hybrid, or 6) Indica strains. Analyses were also performed on samples at the
133	individual level to control for biases that might arise due to the potential artificial nature of
134	named groups and varying group sample sizes.
135	
136	Genetic Differentiation
137	Pairwise genetic differentiation (Fst and Nei's D) calculated in GENALEX ver. 6.4.1 (Peakall &
138	Smouse 2006, Peakall & Smouse 2012) found the highest level of divergence between hemp and
139	high CBD drug-type strains (Fst = 0.215) and between hemp and Sativa drug-type strains (Nei's
140	D = 0.614) (Table 1). The least divergence was observed among the drug-type strains (Fst =
141	0.023-0.04; Nei's D = 0.066-0.109).
142	
143	
144	

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 58 of 117

	NIDA	Hemp	High CBD	Sativa	Hybrid	Indica
NIDA		0.519	0.527	0.553	0.480	0.441
Hemp	0.120		0.489	0.614	0.585	0.459
High CBD	0.166	0.215		0.329	0.310	0.281
Sativa	0.114	0.160	0.137		0.098	0.109
Hybrid	0.117	0.149	0.135	0.040		0.066
Indica	0.078	0.124	0.121	0.035	0.023	

Table 1. Pairwise Fst values (below the diagonal) and Nei's D (above the diagonal) for major *Cannabis* groups.

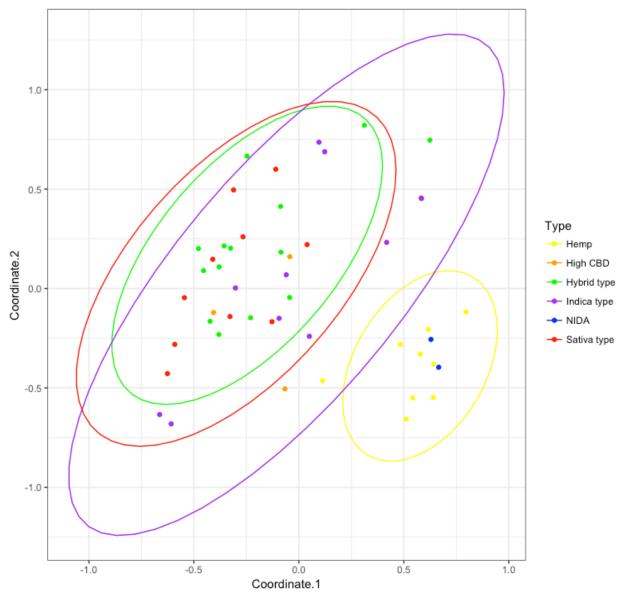
145

146 *Clustering Analysis*

147 Principal Coordinate Analysis (PCoA) was conducted in GENALEX and plotted in R Studio 148 with the ggplot package ⁴² with 95% confidence interval ellipses around the major groups 149 (Figure 1). No confidence intervals were drawn for NIDA (n = 2) or High CBD (n = 3) due to 150 small sample size. Coordinate 1 explains 13.26% of the genetic variation and an additional 151 11.39% of the genetic variation is explained by coordinate 2. The drug-type strains (Indica, 152 Sativa, Hybrid, and High CBD) all occupy the same character space. There is clear separation of 153 hemp samples from the drug-types, with NIDA samples clustering within the hemp confidence 154 interval.

155

156 PC-Ord version 6⁴³ was used to generate a dendrogram with Ward's method and Euclidean

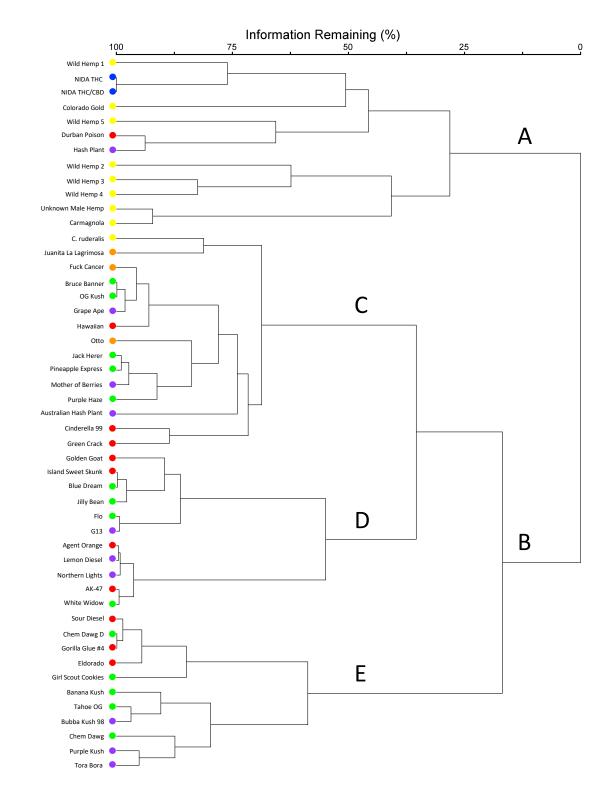

157 Genetic distance parameters based on pairwise genetic distance values generated in GENALEX

158 (Figure 2). The initial branching split the samples into two clusters, A and B. Cluster A contains

all but one hemp sample (88%), as well as the NIDA samples (100%) and two drug-type samples

160 (5%). Cluster B contains the remaining drug-type samples (95%) and one hemp sample (12%).

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 59 of 117


162 163 Figure 1: Principal Coordinates Analysis with 95% confidence intervals around the major groups (hemp = yellow, NIDA = blue, High CBD = orange, Sativa = red, Hybrid = green, Indica = purple). 164

165 Approximately 25% of the genetic variation in these groups is shown (coordinate 1=13.26% and

coordinate 2 = 11.39%). No confidence intervals were drawn for NIDA or High CBD samples due 166

- to the small sample size (n = 2 and n = 3, respectively). 167
- 168

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 60 of 117

170 **Figure 2**: PC-Ord group linkage dendrogram. Samples are color-coded (Hemp = yellow, NIDA = blue,

- 171 High CBD = orange, Sativa = red, Hybrid = green, Indica = purple). Cluster B further branches into
- 172 three clusters (C, D, and E), where Sativa, Hybrid and Indica drug type strains are dispersed
- 173 throughout.

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 61 of 117

STRUCTURE ver. 2.4.2⁴⁴ was used to examine sample assignment to genetic groups while 174 175 allowing admixture. The appropriate number of STRUCTURE groups was validated using 176 STRUCTURE HARVESTER ⁴⁵, which had high support for two genetic groups (K = 2, Δ K = 177 67.68) and weak support for three genetic groups (K = 2, Δ K = 4.48) (Supplemental Figure 1). 178 Additionally, MavericK 1.0.5⁴⁶ was used to independently test group assignments, which also 179 had strong support for two genetic groups (K = 2, probability 0.901) and weaker support for 180 three genetic groups (K = 3, probability 0.097) (Supplemental Figure 2), with the sample 181 assignments matching STRUCTURE (Supplemental Figure 3). The two genetic group 182 STRUCTURE analyses (Figure 3) show consistent differentiation between hemp and drug-type 183 strains. All hemp samples were assigned to genetic group 1 (yellow) with a proportion of 184 inferred ancestry (Q) greater than 0.82 (hemp mean group 1, Q = 0.94). Drug-type samples 185 showed some admixture with the majority of the genetic signal of 31 samples (82%) being 186 assigned to genetic group 2 (green; drug-type mean group 2, O = 0.72). NIDA samples were 187 assigned to genetic group 1 (NIDA mean group 1, Q = 0.97), demonstrating a strong association 188 with hemp. Although not strongly supported, the three genetic group analysis shows some 189 additional genetic structure among drug-type strains. 190

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 62 of 117

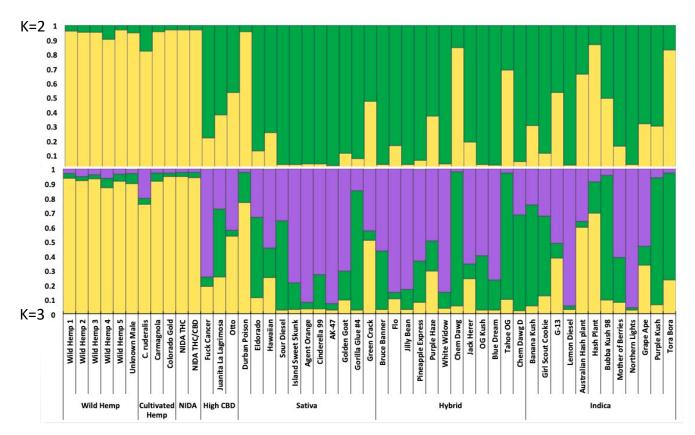
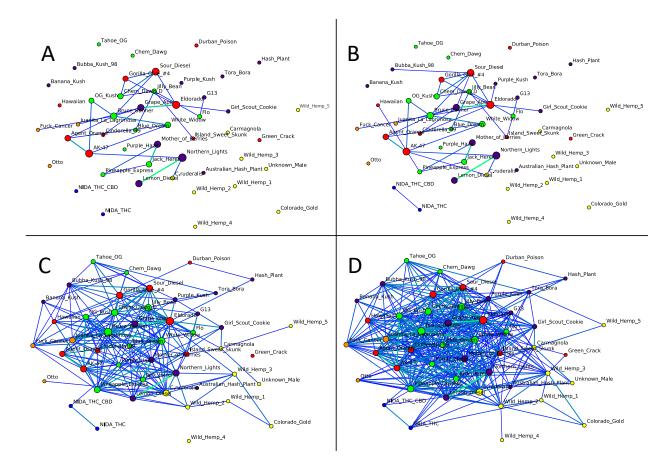



Figure 3: Bayesian clustering analysis from STRUCTURE with the proportion of inferred ancestry for two genetic groups (K = 2, top), and for three genetic groups (K = 3, bottom). Each individual is represented as a single bar in the graph.

195

EDENetwork ver. 2.18⁴⁷ was used to generate a web of genetic relationship based on pairwise 197 198 linkages (Figure 4). The automatically selected percolation threshold was 8.1 (Figure 4A), 199 although not all individuals were connected at this level. The threshold was raised iteratively to 200 connect more divergent samples and explore larger patterns of genetic relationships. The two 201 NIDA samples were united at a threshold of 8.5 (Figure 4B). When the threshold was raised to 202 13.7 (Figure 4C) the NIDA samples became connected to the network via the drug-type sample 203 Eldorado. At a threshold level of 16.9 (Figure 4D) all samples in the dataset are included in the 204 relationship network. 205

207 208

209

220

210 Figure 4: EDENetworks genetic relationship network with incrementally decreasing stringency of 211 required genetic relatedness among samples in the data set. (A) Threshold 8.1: the percolation threshold 212 determined by the analysis. (B) Threshold 8.5: the threshold required to connect NIDA samples to each 213 other, but not to any other samples in the dataset. (C) Threshold 13.7: the threshold necessary to connect 214 the NIDA sample to the larger network with the connection via the drug-type strain Eldorado. (D) 215 Threshold 16.9: the required threshold to connect all samples in the network. Nodes are colored to 216 indicate group designation (Hemp = yellow, NIDA = blue, High CBD = orange, Sativa = red, Hybrid = 217 green, Indica = purple). Node size is proportionate to the number of connections to that individual within 218 the network. Lines thinner and lighter in color indicate weak genetic relationships, while thicker darker 219 lines indicate stronger relationships.

221 Discussion

- 222 The purpose of this study was to examine the genetic relationship of *Cannabis* samples from the
- 223 National Institute on Drug Abuse (NIDA) to hemp and drug-type samples. Our results clearly
- 224 demonstrate that NIDA Cannabis samples are substantially different from most commercially
- available drug-type strains, sharing a genetic affinity with hemp samples in most analyses.
- 226 Previous research has found that medical and recreational Cannabis from California, Colorado,

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 64 of 117

and Washington differs significantly in cannabinoid levels from the research grade marijuana
 supplied by NIDA ¹⁴. Our genetic investigation adds to this previous research, indicating that the
 genetic makeup of NIDA *Cannabis* is also distinctive from commercially available medical and
 recreational *Cannabis*.

231

232 The genetic data collected in this study indicate that two major genetic groups exist within 233 Cannabis sativa. The first group contained a majority of hemp (88 - 100%, depending on 234 analysis) and both NIDA samples (100%), while the second group contained a majority of drug-235 type samples (82 - 95%). These results contribute to the growing consensus that hemp and drugtype *Cannabis* can be consistently differentiated ^{7,10-12,48-51}. To our knowledge, this is the first 236 237 genetic study to include research grade marijuana from NIDA, and its placement with hemp 238 samples was unexpected. However, it is important to note that some drug-type samples (e.g. 239 Durban Poison, Figure 2 & 3) are also placed in the hemp group. Although the sample size of 240 NIDA samples could impact their placement in group-based analyses such as genetic distances 241 (Table 1), all other analyses were carried out at an individual level (Figures 1 - 4) to avoid this 242 issue.

243

According to the University of Mississippi National Center for Natural Products Research
(NCNPR), which produces research grade marijuana for NIDA, the first experimental plots of *Cannabis* were planted in 1968 with seeds from "Mexico, Panama, Southeast Asia, Korea, India,
Afghanistan, Iran, Pakistan, and Lebanon" ^{52,53}. Over the next decade, cultivation techniques
were standardized, with over 100 varieties planted in 1976 ⁵². Between the late 1970's and today,
the University of Mississippi has continued to be the sole producer of research grade marijuana
for NIDA, and it has refined cultivation techniques and extraction procedures, particularly for

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 65 of 117

251 THC and CBD ⁵⁴. The program does not provide variety or strain information when filling 252 Cannabis orders, so it is unclear what is currently grown by NCNPR for federally funded 253 marijuana research. The NCNPR director recently stated that "The marijuana project currently 254 stocks 27 plant varieties with different cannabinoid profiles, various CBG potencies, and a wide range of THC levels" ⁵³. However, the NCNPR website states that only three *Cannabis* varieties 255 256 were grown in 2014 ⁵². Our data suggest that the NIDA *Cannabis* analyzed in this study was 257 sourced from a single strain or two very closely related strains within the NCNPR stock. Without 258 additional information about NCNPR *Cannabis* production, it is difficult to know how many 259 strains are being used in research.

260

261 This study indicates the need for additional research and refinement of our understanding of 262 Cannabis genetic structure and how those differences might impact Cannabis consumers. Although medicinal research on *Cannabis* has predominantly focused on THC and CBD ^{3,9,35-40}, 263 it is becoming apparent that other chemical constituents in various combinations and abundances 264 265 likely have important effects ⁹. If researchers are solely interested in the effects of THC and CBD 266 at known concentrations, then NIDA *Cannabis* could serve as a representative source, although 267 in these cases, isolates of these molecules may be more appropriate. However, given the genetic 268 distinction between NIDA and commercially available *Cannabis*, patients in federally funded 269 Cannabis research are likely experiencing effects that are specific to the plant material provided 270 by NIDA. As the interest for medical *Cannabis* increases, it is important that research examining 271 the threats and benefits of Cannabis use accurately reflect the experiences of the general public. 272

273 Given the rapidly changing landscape of *Cannabis* regulations and consumption 28 , it is not

surprising that commercially available *Cannabis* contains a diversity of genetic types.

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 66 of 117

Commercially available *Cannabis* has come to market through non-traditional means leading to many inconsistencies. We have previously documented ⁵⁵ that there is substantial genetic divergence among samples within named strains, which only exacerbates questions about the impacts of *Cannabis* consumption. These results emphasize the need to increase consistency within the *Cannabis* marketplace, and the need for research grade *Cannabis* to accurately represent what is accessible to consumers.

281

282 In conclusion, this study highlights the genetic difference between research grade marijuana 283 provided by NIDA and commercial Cannabis available to medical and recreational users. This 284 finding reveals that research conducted with NIDA Cannabis may not be indicative of the effects 285 that consumers are experiencing. Additionally, research has demonstrated that Cannabis 286 distributed by NIDA has lower levels of the principal medicinal cannabinoids (THC and CBD) 287 and higher levels of degradation byproducts of cannabinoids (cannabinol, CBN)¹⁴. Taken 288 together, these results demonstrate the need for there to be greater diversity of *Cannabis* 289 available for medical research and that the genetic provenance of those samples to be established 290 to fully understand the implications of results.

291

292 Methods

A total of 49 *Cannabis* samples were used in this research (Supplemental Table 1), including:

wild hemp (5), cultivated hemp (4), NIDA strains (2), high CBD drug-type strains (3), and drug-

295 types strains (35). Drug-type strains were further subdivided into three commonly used

296 categories: Sativa (11), Hybrid (14), and Indica (10) based on information available online ^{27,56}.

297 The drug-type strains were randomly chosen from a much larger pool of samples. Duplicate

accessions within strains were not included.

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 67 of 117

300	DNA was extracted using a modified CTAB extraction protocol 57 with 0.035- 0.100 grams of
301	dried flower tissue per extraction. Ten variable microsatellite loci developed by Schwabe and
302	McGlaughlin ⁵⁵ were used in this study following their previously described procedures.
303	
304	GENALEX ver. 6.4.1 59,60 was used to calculate pairwise genetic differentiation (F _{ST}) and Nei's
305	genetic distance (D) between each of the six groups. PCoA eigenvalues calculated in GENALEX
306	were used to plot the PCoA in RStudio with the ggplot package ^{42,61} with 95% confidence
307	interval ellipses. GENALEX was also used to generate a pairwise genetic distance square matrix
308	which was then used to generate a hierarchical cluster analysis dendrogram with Ward's method
309	and Euclidean Genetic distance parameters in PC-ORD ⁴³ .
310	
311	Genotypes were analyzed using the Bayesian cluster analysis program STRUCTURE ver. 2.4.2
312	⁴⁴ . Burn-in and run-lengths of 50,000 generations were used with ten independent replicates for
313	each STRUCTURE analysis. The number of genetic groups for the data set was determined by
314	STRUCTURE HARVESTER ⁴⁵ , which implements the Evanno et al. method ⁶² .
315	
316	Maverick v1.0.5 ⁴⁶ was used as an additional verification of Bayesian clustering analysis using
317	thermodynamic integration to determine the appropriate number of genetic groups. The
318	following parameters were used: admixture parameter (alpha) of 0.03 with a standard deviation
319	(alphaPropSD) of 0.008, 10 replicates (mainRepeats), 1,000 Burn-in iterations (mainBurnin),
320	5,000 sample iterations (mainRepeats), 100 TI rungs (thermodynamicRungs), 500 TI Burn-in
321	iterations (thermodynamicBurnin), and 1,000 TI iterations (thermodynamicSamples).
322	

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 68 of 117

323	EDENetworks ver. 2.18 ⁴⁷ was used to construct a web of genetic relationships using the Linear
324	Manhattan distance measure. An auxiliary data file was imported to maintain the spatial
325	coordinates and to color individuals by group assignment. The automatic percolation threshold
326	was first derived as 8.1. Networks were generated for subsequent iterative threshold intervals of
327	0.5. Increasing the threshold lowers the stringency for genetic relationships, and as the threshold
328	increases, more relationships are formed in the network. EDENetworks diagrams were
329	constructed for the percolation threshold of 8.1, 8.5, 13.7 and 16.9. These are the values that:
330	connect NIDA samples to each other, but not to any other samples in the dataset (8.5), connect a
331	single NIDA sample to the larger network (13.7), and finally connect all samples in the network
332	(16.9). The size of each node is proportionate to the number of relationship connections to other
333	members in the network. The line color and width indicated the strength of the relationship
334	between two individuals- lighter thicker lines indicate stronger genetic relationships, while the
335	darker thinner lines indicate weaker genetic relationships.
336	
337	Data Availability
338	The scored microsatellite data set analyzed in this study is provided as supplementary material
339	(Supplemental Table 2).
340 341	References

510					
341	References				
342					
343	1	Abel, E. L. Marihuana: the first twelve thousand years. (Springer Science & Business			
344		Media, 2013).			
345	2	World Health Organization. Management of substance abuse, Cannabis,			
346		http://www.who.int/substance abuse/facts/cannabis/en/> (2018).			
347	3	Cousijn, J., Nunez, A. E. & Filbey, F. M. Time to acknowledge the mixed effects of			
348		cannabis on health: a summary and critical review of the NASEM 2017 report on the			
349		health effects of cannabis and cannabinoids. Addiction 113, 958-966,			
350		doi:10.1111/add.14084 (2018).			
351	4	Small, E. in Cannabis sativa LBotany and Biotechnology 1-62 (Springer, 2017).			
352	5	Clarke, R. C. & Merlin, M. D. Cannabis: evolution and ethnobotany. (University of			
353		California Press, 2013).			

354	6	Hillig, K. W. Genetic evidence for speciation in <i>Cannabis</i> (Cannabaceae). <i>Genetic</i>
355		<i>Resources and Crop Evolution</i> 52 , 161-180, doi:10.1007/s10722-003-4452-y (2005).
356	7	Lynch, R. C. et al. Genomic and Chemical Diversity in Cannabis. Critical Reviews in
357		Plant Sciences 35, 349-363, doi:10.1080/07352689.2016.1265363 (2016).
358	8	Vergara, D. et al. Genetic and Genomic Tools for Cannabis sativa. Critical Reviews in
359		Plant Sciences 35, 364-377, doi:10.1080/07352689.2016.1267496 (2016).
360	9	Baron, E. P. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in
361		Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current
362		Evidence and Cannabis Science. Headache 58, 1139-1186, doi:10.1111/head.13345
363		(2018).
364	10	Sawler, J. et al. The Genetic Structure of Marijuana and Hemp. Plos One 10,
365		doi:10.1371/journal.pone.0133292 (2015).
366	11	Dufresnes, C., Jan, C., Bienert, F., Goudet, J. & Fumagalli, L. Broad-Scale Genetic
367		Diversity of Cannabis for Forensic Applications. Plos One 12,
368		doi:10.1371/journal.pone.0170522 (2017).
369	12	Soler, S. et al. Genetic structure of Cannabis sativa var. indica cultivars based on
370		genomic SSR (gSSR) markers: Implications for breeding and germplasm management.
371		Industrial Crops and Products 104, 171-178, doi:10.1016/j.indcrop.2017.04.043 (2017).
372	13	de Meijer, E. P. M., Vanderkamp, H. J. & Vaneeuwijk, F. A. Characterization Of
373		Cannabis Accessions With Regard To Cannabinoid Content In Relation To Other Plant
374		Characters. Euphytica 62, 187-200, doi:10.1007/bf00041753 (1992).
375	14	Vergara, D. et al. Compromised External Validity: Federally Produced Cannabis Does
376		Not Reflect Legal Markets. Scientific Reports 7, doi:10.1038/srep46528 (2017).
377	15	Jikomes, N. & Zoorob, M. The Cannabinoid Content of Legal Cannabis in Washington
378		State Varies Systematically Across Testing Facilities and Popular Consumer Products.
379		Scientific Reports 8, doi:10.1038/s41598-018-22755-2 (2018).
380	16	Potter, D. J., Clark, P. & Brown, M. B. Potency of Delta(9)-THC and other cannabinoids
381		in cannabis in England in 2005: Implications for psychoactivity and pharmacology.
382		Journal of Forensic Sciences 53, 90-94, doi:10.1111/j.1556-4029.2007.00603.x (2008).
383	17	McPartland, J. M. in Botany and Biotechnology (eds S. Chandra, H. Lata, & M.
384		ElSohly) (Springer, Cham, 2017).
385	18	Small, E., Jui, P. Y. & Lefkovitch, L. P. A numerical taxonomic analysis of Cannabis
386		with special reference to species delimitation. Systematic Botany, 67-84 (1976).
387	19	Clarke, R. C. & Merlin, M. D. Letter to the Editor: Small, Ernest. 2015. Evolution and
388		Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization.
389		Botanical Review 81(3): 189-294. Botanical Review 81, 295-305, doi:10.1007/s12229-
390		015-9158-2 (2015).
391	20	Small, E. Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation
392		to Human Utilization. Botanical Review 81, 189-294, doi:10.1007/s12229-015-9157-3
393		(2015).
394	21	Small, E. Cannabis: a complete guide. (CRC Press, 2016).
395	22	Emboden, W. A. Taxonomy For <i>Cannabis</i> . <i>Taxon</i> 26 , 110-110, doi:10.2307/1220203
396		(1977).
397	23	Emboden, W. A. The Genus Cannabis And The Correct Use Of Taxonomic Categories.
398		Journal of Psychoactive Drugs 13, 15-21, doi:10.1080/02791072.1981.10471446 (1981).
399	24	McPartland, J. M. & Guy, G. W. Models of Cannabis Taxonomy, Cultural Bias, and
400		Conflicts between Scientific and Vernacular Names. <i>Botanical Review</i> 83, 327-381,
401		doi:10.1007/s12229-017-9187-0 (2017).

402	25	Smith, M. H. Heart of Dankness: Underground Botanists, Outlaw Farmers, and the
403		Race for the Cannabis Cup., (Broadway Books, 2012).
404	26	Leaf Science. Indica vs Sativa: Understanding the Differences,
405		http://www.leafscience.com/2014/06/19/indica-vs-sativa-understanding-differences/
406		(2016).
407	27	Leafly. Cannabis Strain Explorer, < https://www.leafly.com/explore> (2018).
408	28	ProCon.org. 33 Legal Medical Marijuana States and DC,
409		">(2018) .
410	29	ProCon.org. Number of Legal Medical Marijuana Patients (as of May 17 2018),
411		(2018).
412	30	United States Congress. Comprehensive Drug Abuse Prevention and Control Act of
413		1970. 1236-1296 (Public Law, United States of America, 1970).
414	31	Jaeger, K. Surgeon General Says Marijuana's Schedule 1 Status Hinders Research,
415		https://www.marijuanamoment.net/surgeon-general-says-marijuanas-schedule-i-status-
416		hinders-research/> (2018).
417	32	National Institute on Drug Abuse. NIDA's Role in Providing Marijuana for Research,
418		https://www.drugabuse.gov/drugs-abuse/marijuana/nidas-role-in-providing-marijuana-
419		research> (2018) .
420	33	National Institute on Drug Abuse. Funding: Project Listing by Category, Cannabinoid
421		<i>Research</i> , 2015).
422	34	National Institute on Drug Abuse. NIDA Research on Marijuana and Cannabinoids,
423		2016).
424	35	National Institute of Health & National Institute on Drug Abuse. Funding: Project
425		Listing by Category, Cannabidiol Research,
426		https://report.nih.gov/categorical_spending_project_listing.aspx?FY=2015&ARRA=N
427		&DCat=Cannabidiol%20Research> (2018).
428	36	National Institute of Health & National Institute on Drug Abuse. Funding: Project
429		Listing by Category, Cannabinoid Research,
430		2018">https://report.nih.gov/categorical_spending_project_listing.>2018).
431	37	Citti, C., Braghiroli, D., Vandelli, M. A. & Cannazza, G. Pharmaceutical and biomedical
432		analysis of cannabinoids: A critical review. Journal of Pharmaceutical and Biomedical
433		Analysis 147, 565-579, doi:10.1016/j.jpba.2017.06.003 (2018).
434	38	Borgelt, L. M., Franson, K. L., Nussbaum, A. M. & Wang, G. S. The Pharmacologic and
435		Clinical Effects of Medical Cannabis. Pharmacotherapy 33, 195-209,
436		doi:10.1002/phar.1187 (2013).
437	39	Maa, E. & Figi, P. The case for medical marijuana in epilepsy. <i>Epilepsia</i> 55, 783-786,
438		doi:10.1111/epi.12610 (2014).
439	40	Minkin, R. M. Cannabis Pharmacy: The Practical Guide to Medical Marijuana. Library
440		<i>Journal</i> 139 , 98-98 (2014).
441	41	ElSohly, M. A. Marijuana & the Cannabinoids. (Humana Press, 2007).
442	42	RStudio: integrated development for R, (RStudio, Inc., Boston, MA, 2015).
443	43	PC-ORD: multivariate analysis of ecological data; Version 4 for Windows;[User's
444		Guide]. (MjM software design, 1999).
445	44	Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using
446		multilocus genotype data. Genetics 155, 945-959 (2000).
447	45	Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: a website and program for
448		visualizing STRUCTURE output and implementing the Evanno method. Conservation
449		Genetics Resources 4, 359-361, doi:10.1007/s12686-011-9548-7 (2012).

450	46	Verity, R. & Nichols, R. A. Estimating the Number of Subpopulations (K) in Structured
451		Populations. Genetics 203, 1827-+, doi:10.1534/genetics.115.180992 (2016).
452	47	Kivela, M., Arnaud-Haond, S. & Saramaki, J. EDENetworks: A user-friendly software to
453		build and analyse networks in biogeography, ecology and population genetics. <i>Molecular</i>
454		Ecology Resources 15, 117-122, doi:10.1111/1755-0998.12290 (2015).
455	48	Datwyler, S. L. & Weiblen, G. D. Genetic variation in hemp and marijuana (Cannabis
456		sativa L.) according to amplified fragment length polymorphisms. Journal of Forensic
457		Sciences 51, 371-375, doi:10.1111/j.1556-4029.2006.00061.x (2006).
458	49	Forapani, S. et al. Comparison of hemp varieties using random amplified polymorphic
459		DNA markers. Crop Science 41, 1682-1689, doi:10.2135/cropsci2001.1682 (2001).
460	50	Hakki, E. E., Kayis, S. A., Pinarkara, E. & Sag, A. Inter simple sequence repeats separate
461		efficiently hemp from marijuana (Cannabis sativa L.). Electronic Journal of
462		Biotechnology 10, 570-581, doi:10.2225/vol10-issue4-fulltext-4 (2007).
463	51	McPartland, J. M. Commentary on: Datwyler SL, Weiblen GD. Weiblen. Genetic
464		variation in hemp and marijuana (<i>Cannabis sativa</i> L.) according to amplified fragment
465		length polymorphisms. J forensic sci 2006;51 : 371-5. Journal of Forensic Sciences 51,
466		1405-1405, doi:10.1111/j.1556-4029.2006.00276.x (2006).
467	52	University of Mississippi. Marijuana Research, History,
468		(2017).
469	53	Khan, I. in <i>The Chronicle of Higher Education</i> (2018).
470	54	Mississippi, T. U. o. Marijuana Research NIDA Contract,
471		http://pharmacy.olemiss.edu/marijuana/nida-contract/ (2017).
472	55	Schwabe, A. L. & McGlaughlin, M. E. Genetic tools weed out misconceptions of strain
473		reliability in Cannabis sativa: Implications for a budding industry. Journal of Cannabis
474		Research (in Press 2019).
475	56	Wikileaf. Cannabis Strains: Strain Library < <u>https://www.wikileaf.com/strains/</u> > (2018).
476	57	Doyle, J. J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue
477		<i>Phytochemical Bulletin</i> 4(2) , 359-361 (1987).
478	58	Faircloth, B. C. MSATCOMMANDER: detection of microsatellite repeat arrays and
479		automated, locus-specific primer design. Molecular Ecology Resources 8, 92-94,
480		doi:10.1111/j.1471-8286.2007.01884.x (2008).
481	59	Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic
482		software for teaching and research. <i>Molecular Ecology Notes</i> 6, 288-295,
483	6.0	doi:10.1111/j.1471-8286.2005.01155.x (2006).
484	60	Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic
485		software for teaching and research-an update. <i>Bioinformatics</i> 28, 2537-2539,
486	<i></i>	doi:10.1093/bioinformatics/bts460 (2012).
487	61	RStudio: integrated development for R." (RStudio, Inc., Boston, MA, 2015).
488	62	Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals
489		using the software STRUCTURE: a simulation study. <i>Molecular Ecology</i> 14 , 2611-2620,
490		doi:10.1111/j.1365-294X.2005.02553.x (2005).
491		
492	A . 1	
493	Ackr	nowledgements

494 The National Institute on Drug Abuse provided the Research Grade *Cannabis* samples from

495 which DNA used in this study was extracted. We thank Matt Kahl and Caren Kershner for

Case: 20-71433, 07/27/2020, ID: 11767302, DktEntry: 14, Page 72 of 117

- 496 providing hemp samples for this project, Melissa Islam, Associate Director of Biodiversity
- 497 Research at the Denver Botanic Gardens for access to wild collected hemp herbarium specimens
- 498 (Kathryn Kalmbach Herbarium), and the Cannabis Genome Research Initiative for the sample of
- 499 *Cannabis ruderalis*. Funding for this project was provided through research grants awarded to A.
- 500 Schwabe by the University of Northern Colorado Graduate Student Association and the
- 501 University of Northern Colorado College of Natural and Heath Sciences, and the McGlaughlin
- 502 Lab, School of Biological Sciences, University of Northern Colorado.
- 503

504 Author Contributions

505 A.S conceived the project, collected samples, conducted DNA extractions, designed and

506 optimized microsatellite primers, compiled and analyzed data, and drafted manuscript content;

507 C.H conducted DNA extractions, compiled and analyzed data, and prepared the first draft of the

508 manuscript; R.M.H provided DNA from NIDA samples; M.E.M directed the project, provided

some funding, contributed statistical analysis and manuscript revisions; all authors contributed to

- 510 manuscript preparation.
- 511

512 **Competing Interests**

- 513 The authors declare they have no competing interests.
- 514
- 515
- 516